
NASA/CR- 1999-208977

ICASE Report No. 99-1

An Object-oriented Collection of Minimum Degree

Algorithms: Design, Implementation, and Experiences

Gary Kumfert and Alex Pothen

Old Dominion University, Norfolk,

and

ICASE, Hampton, Virginia

Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

January 1999

Available from the following:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Infozrnation Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161- 2171

(703) 487-4650

AN OBJECT-ORIENTED COLLECTION OF MINIMUM DEGREE ALGORITHMS:

DESIGN, IMPLEMENTATION, AND EXPERIENCES*

GARY KUMFERT t AND ALEX POTHEN t

Abstract. The multiple minimum degree (MMD) algorithm and its variants have enjoyed 20+ years of

research and progress in generating fill-reducing ordcrings for sparse, symmetric positive definite matrices.

Although conceptually simple, efficient implementations of these algorithms are deceptively complex and

highly specialized.

In this case study, we present an object-oriented library that implements several recent minimum degree-

like algorithms. Wc discuss how object-oriented design forces us to decompose these algorithms in a different

manner than earlier codes and demonstrate how this impacts the flexibility and efficiency of our C++

implementation. We compare the performance of our code against other implementations in C or Fortran.

1. Introduction. We have implemented a family of algorithms in scientific-computing traditionally

written in Fortran 77 or C using object-oriented techniques and C++. The particular family of algorithms

chosen, the Multiple Minimum Degree (MMD) algorithm and its variants, is a fertile area of research and

has been so for the last twenty years. Several significant advances have been published as recently as the last

three years. Current implementations, unfortunately, tend to be specific to a single algorithm, arc highly

optimized, and are generally not readily extensible. Many are also not public domain.

Our goal was to construct an object-oriented library that provides a laboratory for creating and experi-

menting with these newer algorithms. In anticipation of new variations that arc likely to bc proposed in the

future, wc wanted the code to be extensiblc. The performance of the code must also bc competitive with

other implementations.

These algorithms generate permutations of large, sparse, symmetric matrices to control the work and

storage required to factor that matrix. We explain the details of how work and storage for factorization of

a matrix depends on the ordering in Sect. 2. This is formally stated as the fill-minimization problem. Also

in Sect. 2, we review the Minimum Degree algorithm and its variants emphasizing recent developments. In

Sect. 3 wc discuss the design of our library, fleshing out the primary objects and how they interact. Wc

present our experimental results in Sect. 4; examining the quality of the orderings obtained with our codes,

and comparing the speed of our library with other implementations. The exercise has led us to new insights

into the nature of these algorithms. Wc provide some interpretation of the experience in Sect. 5.

2. Background.

2.1. Sparse Matrix Factorization. Consider a linear system of equations Ax ---- b, where the co-

efficient matrix A is sparse, symmetric, and either positive definite or indefinite. We know A and b in

advance and must solve for x. A direct method for solving this problem computes a factorization of the

*This work was supported by National Science Foundation grants CCR-9412698 and DMS-9807172, by a GAANN fellowship

from the Department of Education, and by the National Aeronautics and Space Administration under NASA Contract No.

NAS1-97046 while the second author was in residence at the Institute for Computer Applications in Science and Engineering

(ICASE), NASA Langley Research Center, Hampton, VA 23681-2199.

?Department of Computer Science, Old Dominion University, Norfolk VA 23529-0162, and ICASE, NASA Langley Re-

search Center, Hampton VA 23681-2199. Email:{kum:fert, pothen}Qcs.odu.edu, {kumfert, pothen}©icase.edu. URL:

www. cs. odu. edu/~pothen.

k Lk Gk Gk

IX e4 /
rx,_x _ I

done

®

FIG. 2.1. Examples of factorization and

factor, Lk, the associated elimination graph,

edges. The quotient graph has edges and two

boxed ovals).

fill. For each step, k, in the j2ctorization, there is the nonzero structure of the

Gk, and the quotient graph _!:. The elimination graph consists of vertices and

kinds of vertices, super'nodes rrepresented by ovals) and enodes (represented by

matrix A = LBL T, where L is a lower triangular matrix, and J3 is a block diagonal matrix with 1 x 1 or

2 × 2 blocks.

The factor L is computed by setting L0 = A and then creating Lk+ 1 by adding multiples of rows and

columns of Lk to other rows and columns of L k . This implies tha_ L has nonzeros in all the same positions*

as A plus some nonzeros in positions that were zero in A, but }nduced by the factorization. It is exactly

these nonzeros that arc called fill elements. The presence of fill in zreases both the storage and work required

in the factorization.

An example matrix is provided in Fig. 2.1 that shows non-z...'ros in original positions of A as "×" and

fill clcnmnts as "e". This example incurs two fill elements. The crdcr in which the factorization takes place

greatly influences the amount of fill. The matrix A is often permuted by rows and columns to reduce the

number of fill elements, thereby reducing storage and flops requiJcd for factorization. Given the example in

Fig. 2.1, the elimination order {2, 6, 1, 3, 4, 5} produces only one fill element. This is the minimum number

of fill elements for this example.

If A is positive definite, Cholesky factorization is numericall:r stable for any symmetric permutation of

A, and the fill-reducing permutation need not bc modified durin,_ factorization. If A is indefinite, then the

initial permutation may have to be further modified during facto.dzation for numerical stability.

2.2. Elimination Graph. The graph G of the sparse matlix A is a graph whose vertices correspond

to the columns of A. We label the vertices 1,... ,n, to correspcnd to the n columns of A. An edge (i,j)

* No "accidental" cancellations will occur during factorization if the num _'rical values in A are algebraic indeterminates.

Abbreviation

TABLE 2.1

Algorithms that fit into the Minimum Priority .family.

Algorithm Name Primary Reference
MMD

AMD

AMF

AMMF

AMIND

MMDF

MMMD

Multiple Minimum Degree

Approximate Minimum Dcgrcc

Approximate Minimum Fill

Approximate Minimum Mean Local Fill

Approximate Minimum Increase in

Neighbor Degree

Modified Minimum Deficiency

Modified Multiple Minimum Dcgrcc

Liu [5]

Amestoy, Davis and Duff [1]

Rothberg [8]

Rothberg and Eisenstat [9]

Rothberg and Eisenstat [9]

Ng and Raghavan [6]

Ng and Raghavan [6]

connecting vertices i and j in G exists if and only if aij is nonzero. By symmetry, aj,_ is also nonzero.

The graph model of symmetric Gaussian elimination was introduced by Parter [7]. A sequence of

elimination graphs, Gk, represent the fill created in each step of the factorization. The initial elimination

graph is the graph of the matrix, Go = G(A). At each step k, let vk be the vertex corresponding to the k TM

column of A to bc eliminated. The elimination graph at the next step, Gk+l, is obtained by adding edges

to make all the vertices adjacent to Vk pairwise adjacent to each other, and then removing vk and all edges

incident on vk. The inserted edges are fill edges in the elimination graph. This process repeats until all the

vertices are removed from the elimination graph. The example in Fig. 2.1 illustrates the graph model of

elimination. Finding an elimination order that produces the minimum amount of fill is NP-complcte [10].

2.3. Ordering Heuristics. An upper bound on the fill that a vertex of degree d can create on elimina-

tion is d(d- 1)/2. The minimum degree algorithm attempts to minimize fill by choosing the vertex with the

minimum degree in the current elimination graph, hence reducing fill by controlling this worst-case bound.

In Multiple Minimum Degree (MMD), a maximal independent set of vertices of low degree are eliminated in

one step to keep the cost of updating the graph low.

Many more enhancements are necessary to obtain a practically efficient implementation of MMD. A

survey article by George and Liu [4] provides the details. There have been several contributions to the field

since the survey. A list of algorithms that we implement in our library and references are in Table 2.1. Most

of these adaptations increase the runtime by 5-25% but reduce the amount of arithmetic required to generate

the factor by 10-25%.

2.4. The Quotient Graph. Up to this point we have been discussing the elimination graph to model

fill in a minimum priority ordering. While it is an important conceptual tool, it has difficulties in imple-

mentation arising from the fact that the storage required can grow like the size of the factor and cannot

be predetermined. In practice, implementations use a quotient graph, G, to represent the elimination graph

in no more space than that of the initial graph G(A). A quotient graph can have the same interface as

an elimination graph, but it must handle internal data differently, essentially through an extra level of

indirection.

The quotient graph has two distinct kinds of vertices: supernodes and enodes t A supcrnode represents a

set of one or more uncliminated columns of A. Similarly, an cnode represents a set of one or more eliminated

tAlso called "eliminated supernodc" or "clement" elsewhere.

k_--0

while k < n

Let m bc the minimum known degrec, deg(x), of all x E Gk

while m is still the minimum known dcgrce of all x C Gk

Choose supcrnode Xk such that deg(xk) = m

for all of thc p columns represcntcd by supernodc xk:

Number columns (k + 1)... (k + p).

Form enode ek from supernode xk and all adjaccnt enodes.

for all supernodcs x adjacent to ck:

Label deg(x) as "unknown."

k_---k+p

for all supernodes x where deg(x) is unknown:

Update lists of adjacent supernodes and enodes of x.

Check for various QuotientGraph optimizations.

Compute dog(x).

FIG. 2.2. The Multiple Minimum Degree algorithm defined in terms of a Quotient Graph.

columns of A. The initial graph, G0, consists entirely of supernodcs and no cnodes; further, each supcrnodc

contains one column. Edges are constructed the same as in th_ elimination graph. The initial quoticnt

graph, Go, is identical to the initial elimination graph, Go.

When a supernode is eliminated at some step, it is not removed from the quotient graph; instead,

the supernode becomes an enode. Enodes indirectly represent ti_e fill edges in thc elimination graph. To

dcmonstrate how, wc first define a reachable path in the quotien_ graph as a path (i, el, e2,.., cp, j), where

i and j are supernodes in Gk and el, e2,.., ep are enodes. Note taat the number of cnodcs in the path can

be zero. We also say that a pair of supernodes i,j is reachable in Gk if there exists a reachable path joining

i and j. Since the number of cnodcs in the path can be zero, adj _cency in Gk implies reachability in Gk. If

two supcrnodcs i, j are reachable in the quotient graph Gk, then the corresponding two vertices i,j in the

elimination graph Gk are adjacent in Gk.

In practice, the quotient graph is aggressively optimized; all ni)n-essential enodes, supcrnodes, and cdges

are deleted. Sincc we are only interested in paths through enOdes, if two enodcs arc adjaccnt they are

amalgamated into one. So in practice, the number of enodes in all reachable paths is limited to either zero

or one. Alternatively, one can state that, in practice, the reach_.ble set of a supcrnode is the union of its

adjacent supcrnodcs and all supcrnodes adjaccnt to its adjacent,modes. This amalgamation process is one

way how some enodes come to represent more than their original eliminated column.

Supernodes arc also amalgamated but with a different rationale. Two supcrnodcs are indistinguishable if

their reachable sets (including themselves) are identical. When t|_is occurs, all but one of the indistinguish-

able supernodes can be removed from the graph. The remaining supernode keeps a list of all the columns

of the supcrnodes compressed into it. When the remaining super rode is eliminated and becomes an enodc,

all its columns can be eliminated together. The search for indi, tinguishablc supcrnodcs can be done be-

fore eliminating a single supernode using graph compression [2].]/Iorc supernodes become indistinguishablc

as elimination proceeds. An exhaustive search for indistinguishable supcrnodes during elimination is pro-

hibitivcly expensive, so it is often limited to supernodes with identical adjacency sets (assuming a self-edge)

instead of identical reachable sets.

• QuotientGraph
1. MustprovideamethodforextractingtheReachableSetofavertex.
2. Beableto eliminatesupernodcsondemand.
3. Shouldhavea separatelazyupdatemethodformultipleelimination.
4. Shouldprovidelistsof compressedverticesthat canbeignoredfor the restof theordering

algorithm.
5. Mustproduceaneliminationtrccorpermutationvectorafteralltheverticeshavebeenelimi-

nated.

6. Shouldallowconstaccessto currentgraphforvariousPriorityStrategies.
• BucketSorter

1. Mustremoveanitemfromthesmallestnon-emptybucketinconstanttime.
2. Mustinsertanitcm-keypairin constanttime.
3. Mustremoveanitembynamefromanywherein constanttime.

• PriorityStrategy
1. Mustcomputcthenewpriorityfor eachvertexin the list.
2. Mustinsertthepriority-vertexpairsintotheBucketSorter.

FIG. 2.3. Three most _mportant classes in a minimum priority ordering and some of their related requirements.

Edges bctwcen supernodcs can bc removed as elimination proceeds. When a pair of adjacent supernodcs

share a common enodc, they arc reachable through both the shared edge and the shared cnodc. In this case,

the edge can bc safely removed. This not only improves storage and speed, but allows tighter approximations

to supernode degree as well.

Going once more to Fig. 2.1. wc consider now the quotient graph. Initially, the elimination graph and

quotient graph arc idcntical. After the elimination of column 1, we sec that supernodc 1 is now an enode.

Note that unlike the elimination graph, no edge was added between supcrnodes 3 and 4 since they are

reachable through cuode 1. After the elimination of column 2, we have removed an cdgc between supernodes

5 and 6. This was done because the edge was redundant; supernode 5 is reachable from 6 through enode

2. When wc eliminate colunm 3, supcrnode 3 becomes an enode, it absorbs enode 1 (including its edge to

supernodc 4). Now cnodc 3 is adjacent to supcrnodes 4, 5 and 6. The fill edge between supernodcs 4 and 5

is redundant and can bc removed. At this point 4, 5, and 6 arc indistinguishablc. However, since we cannot

afford an exhaustive search, a quick search (by looking for identical adjacency lists) finds only supernodes 5

and 6 so they arc merged to supcrnodc {5, 6}. Then supernode 4 becomes an cnode and absorbs enodc 3.

Finally supernode {5, 6} is eliminated. The relative order between columns 5 and 6 has no effect on fill.

We show the Multiple Minimum Degree algorithm defined in terms of a quotient graph in Fig. 2.2. A

single elimination Minimum Degree algorithm is similar, but executes the inner while loop only once. We

point out that we have not provided an exhaustive accounting of quotient graph features and optimiza-

tions. Most of the time is spent in the last three lines Fig. 2.2, and often they are tightly intertwined in

implementations.

3. Design. To provide a basis for comparison, we briefly discuss the design and implementation char-

actcristics of MMD [51 and AMD [1]. Both implementations were written in Fortran 77 using a procedural

decomposition. They have no dynamic memory allocation and implement no abstract data types in the code

besides arrays.

GENMMD is implemented in roughly 500 lines of executable source code with about 100 lines of com-

//Major Classes

QuotientGraph* qgraph;

BucketSorter* sorter;

PriorityStrategy* priority;

SuperNodeList* reachableSuperNodes, * merged_uperNodes;

// Initialization...

//Load all vertices into soger

1. priority->computeAndlnsert(priority::ALL_ODES, qgraph, sorter);

2. if (priority->requireSingleElimination() == true)

3. maxStep = 1;

else

4. maxStep = graph->size();

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

//Main loop

while (sorter->notEanpty()) {

int min = sorter->queryMinNonemptyBucket_);

int step = 0;

while ((min == sorter->queryMinNonemptyBucket() &&

(step < maxStep)) {

int snode = sorter->removeItemFromBu_ket(min);

qgraph->eliminateSupernode(snode);

SuperNodeList* tempSuperNodes;

tempSuperNodes = qgraph->queryReachableSet(snode);

sorter->removeSuperNodes(tempSuperN0des);

*reachableSuperNodes += *tempSuperNodes;

++step;

}

qgraph->update(reachableSuperNodes, mer_edSuperNodes);

sorter->removeSuperNodes(mergedSuperNodes);

priority->computeAndInsert(reachableSuperNodes, qgraph, sorter);

mergedSuperNodes->resize(0);

reachableSuperNodes->resize(0);

}

FIG. 2.4. A general Minimum Priority Algorithm using tt, e objects described in Fig. 2.3.

ments. The main routine has 12 parameters in its calling sequerce and uses four subroutines that roughly

correspond to initialization, supernode elimination, quotient grai,h update/degree calculation, and finaliza-

tion of the permutation vector. The code operates in a very tight [ootprint and will often use the same array

for different data structures at the same time. The code has over 20 goto statements and can be difficult to

follow.

AMDhasroughly600linesof executable source code which almost doubles when the extensive comments

arc included. It is implemented as a single routine with 16 calling parameters and no subroutine calls. It is

generally well structured and documented. Manually touching up our f2c conversion, we were able to easily

replace the 17 goto statements with while loops, and break and continue statements. This code is part of

the commercial Harwell Subroutine Library, though we report results from an earlier version shared with us.

The three major classes in our implementation arc shown in a basic outline in Fig. 2.3. Given these

classes, we can describe our fourth object; the MinimumPriorityOrdering class that is responsible for di-

recting the interactions of these other objects. The main method of this class (excluding details, debugging

statements, tests, comments, etc.) is approximately the code fragment in Fig. 2.4. By far the most compli-

cated (and expensive) part of the code is line 15 of Fig. 2.4 where the graph update occurs.

The most elegant feature of this implementation is that the PriorityStrategy object is an abstract base

class. Wc have implemented several derived classes, each one implementing one of the algorithms in Table 2.1.

Each derived class involves overriding two virtual functions (one of them trivial). The classes derived from

PriorityStrategy average 50 lines of code each. This is an instance of the Strategy Pattern [3].

The trickiest part is providing enough access to the QuotientGraph for the PriorityStrategy to be useful

and cxtensiblc, but to provide enough protection to keep the PriorityStrategy from corrupting the rather

complicated state information in the QuotientGraph.

Because we want our library to be extensible, we have to provide the PriorityStrategy class access to the

QuotientGraph. But we want to protect that access so that the QuotientGraph's sensitive and complicated

internal workings are abstracted away and cannot be corrupted. We provided a full-fledged iterator class,

called ReachablcSetIterator, that encapsulated the details of the QuotientGraph from the PriorityStratcgy,

making the interface indistinguishable from an EliminationGraph.

Unfortunately, the overhead of using these itcrators to compute the priorities was too expensive. We

rewrote the PriorityStratcgy classes to access the QuotientGraph at a lower level traversing adjacency

lists instead of reachable sets. This gave us the performance we needed, but had the unfortunate effect of

increasing the coupling between classes. However, the RcachableSetIterator was left in the code for ease of

prototyping.

Currently we have implemented a PriorityStrategy class for all of the algorithms listed in Table 2.1.

They all compute their priority as a function of either the external degree, or a tight approximate degree,

of a supernode. Computing the external degree is more expensive, but allows multiple elimination. For

technical reasons, to get the approximate degree tight enough the quotient graph must bc updated after

every supernode is eliminated, hence all algorithms that use approximate dcgrcc arc single elimination

algorithmst. For this reason, all previous implementations are either multiple elimination codes or single

elimination codes, not both. The quotient graph update is the most complicated part of the code and single

elimination updates are different from multiple elimination updates.

The MinimumPriorityOrdering class queries the PriorityStrategy whether it requires quotient graph

updates after each elimination or not. It then relays this information to the QuotientGraph class which

has different optimized update methods for single elimination and multiple elimination. The QuotientGraph

class can compute partial values for external degree or approximate degree as a side-effect of the particular

update method.

*Readers are cautioned that algorithms in Table 2.1 that approximate quantities other than degree could be multiple elimi-

nation algorithms. Rothberg and Eisenstat [9] have defined their algorithms using either external degree (multiple elimination)

or approximate degree (single elimination).

TABLE 3.1

Relative performance of our implementation of MAiD (both with and t_ithout precompression) to GENMMD. GENMMD

does not have precompression. The problems are sorted in nondecreasing si :e of the Cholesky factor.

1,

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

problem [VI bEI

commanche 7,920 11,880

barth4 6.019 17,473

barth 6.691 19,748

fordl 18,728 41,424

kenl3 28.632 66 486

time (seconds)

GENMMD

no co_lpr.

,10

.30

3.61

time (normalized)

C++

no compr.

barth5 15.606

shuttle_eddy 10.429

bcsstk18 11.948

bcsstkl6 4.884

bcsstk23 3,134

bcsstkl5 3,948

bcsstkl7 10,974

pwt 36,519

ford2 100,196

bcsstk30 28,924

tandem_vtx 18,454

pdslO 16,558

copterl 17,222

bcsstk31 35,588

nasasrb 54,870

skirt 45,361

tandem_dual 94,069

onera_dual 85,567

copter2 55,476

45

46

68

142

21

56

208

144

222

.08 5.88

.06 6.17

5.00

4.57

.92

compr.

geometric mean

median

878 .:28

585 .09

571 .44

747 .16

022 .22

934 ,22

838 .30

794 .58

246 2.44

5.81

6.42

5.36

4.69

.94

4.96 4.97

9.44 9.33

4.59 4.89

8.19 1.74

4.32 4.34

4.77 4.62

5.97 2.33

6.16 6.32

3.84 3.90

5.79 1.67

4.11 4.13

1.24 1.16

6.22 6.52

4.83 2.58

6.14 2.44

6.38 1.72

3.70 3.67

3.65 3.69

4.57 4.70

1,007,284 .95

117,448 .35

66,550 107.81

96,921 .67

572,914 1.50

1,311,227 2.36

1,268,228 2. D3

183,212 4.50

166,817 4.23

352,238 3.96

4.61 3.53

4.90 4.24

Given this framework, it is possible to modify the MinimumPriorityOrdering class to switch algorithms

during elimination. For example, one could use MMD at first to create a lot of enodes fast, then switch to

AMD whcn the quotient graph becomes more tightly connected aad independent sets of vertices to eliminate

are small. There are other plausible combinations because different algorithms in Table 2.1 prefer vertices

with different topological properties. It is possible that the topological properties of the optimal vcrtex to

eliminate changes as elimination progresses.

4. Results. We compare actual execution times of our inplementation to an f2c conversion of the

GENMMD code by Liu [5]. This is currently among the most widcly used implementations. In general,

our object-oriented implementation is within a factor of 3-4 of (IENMMD. We expect this to get closer to

a factor of 2-3 as the code matures. Wc normalize the execution time of our implementation to GENMMD

TABLE 3.2

Comparison of quality of various priority policies. Quality of the ordering here is measured in te_ms of the amount of

work to factor the matrix with the given ordering. Refer to Table 2.1 for algorithm names and references.

Work

problem MMD

1. commanchc 1.76e+06

2. barth4 4.12c+06

3. barth 4.55e+06

4. fordl 1.67e+07

5. kcnl3 1.84c+07

6. barth5 1.96c+07

7. shuttle_eddy 2.76e+07

8. bcsstkl8 1.37c+08

9. bcsstkl6 1.56e+08

10. bcsstk23 1.56e+08

11. bcsstk15 1.74e+08

12. bcsstkl7 2.22e+08

13. pwt 2.43e+08

14. ford2 3.19e+08

15. bcsstk30 9.12e+08

16. tandem_vtx 1.04e+09

17. pdsl0 1.04e+09

18. coptcrl 1.33e+09

19. bcsstk31 2.57e+09

20. nasasrb 5.47e+09

21. skirt 6.04e+09

22. tandem_dual 8.54e+09

23. onera_dual 9.69e+09

24. copter2 1.35e+09

geometric mean

median

Work (normalized)

AMD AMF AMMF AMIND MMDF MMMD

1.00 .89 .87 .87 .92 .89

1.00 .89 .83 .82 .86 .82

1.02 .90 .84 .85 .91 .89

.98 .84 .87 .82 .89 .86

1.01 .89 .88 .96 .83 .87

1.00 .90 .81 .82 .72 .83

.97 .87 .74 .74 .75 .81

.98 .77 .78 .74 .86 .83

1.02 .81 .84 .82 .82 .81

.95 .79 .73 .75 .80 .81

.97 .89 .84 .81 .84 .86

1.10 .89 .85 .88 1.02 .89

1.03 .92 .87 .90 .88 .90

1.03 .76 .72 .70 .77 .77

1.01 .97 .82 .79 .88 .87

.97 .77 .56 .66 .70 .77

.90 .88 .91 .87 .88 1.00

.96 .82 .62 .71 .79 .87

1.00 .95 .67 .71 .94 .87

.95 .82 .70 .79 .93 .82

1.11 .83 .90 .76 .88 .83

.97 .42 .51 .62 .72 .72

1.03 .70 .48 .57 .65 .71

.97 .73 .50 .61 .66 .69

1.00 .84 .74 .77 .83 .83

1.00 .85 .82 .79 .85 .83

and present them in Table 3. For direct comparison, pre-compressing the graph was disabled in our C++

code. We also show how our code performs with compression.

All runtimes are from a Sun UltraSPARC-5 with 64MB of main memory. The software was compiled

with GNU C++ version 2.8.1 with the -0, and -fno-exceptions flags set. The list of 24 problems are

sorted in nondecreasing order of the work in computing the factor with the MMD ordering. The numbers

presented are the average of eleven runs with different seeds to the random number generator. Because these

algorithms are extremely sensitive to tie-breaking, it is common to randomize the graph before computing

the ordering.

Wc refer the reader to Table 3 for relative quality of orderings and execution times. As with the previous

table, the data represents the average of 11 runs with different seeds in the random number generator. The

relative improvement in the quality of the ordcrings over MMD is comparable with the improvements reported

byotherauthors,eventhoughthetestsetsarenotidentical.
WchavesuccessfullycompiledandusedourcodeonSunSol_risworkstationsusingbothSunPROC++

version4.2andGNUC++ version2.8.1.1.Thecodedoesnotwcirkonolderversionsof thesamecompilers.
WehavealsocompiledourcodeonWindowsNTusingMicrosofi_VisualC++ 5.0.

5. Conclusions. Our implementation shows that, contrary to popular belief, the most expensive part

of these minimum priority algorithms is not the degree computat!on it is the quotient graph update. With

all other implementations including GENMMD and AMD the degree computation is tightly coupled with

the quotient graph update, making it impossible to separate th_ costs of degree computation from graph

update with any of the earlier procedural implementations. The priority computation (for minimum degree)

involves traversing the adjacency set of each reachable supernode after updating the graph. Updating the

graph, however, involves updating the adjacency sets of each supej'node and enode adjacent to each reachable

supernode. This update process often requires several distinct p_sses.

By insisting on a flexible, extensible framework, we required more decoupling between the priority

computation and graph update: between algorithm and data stlucture. In some cases, we had to increase

the coupling between key classes to improve performance. We arc generally satisfied with the performance of

our code and with the value added by providing implementations _f the full gamut of state-of-art algorithms.

Wc will make the software publicly available.

Acknowledgements. We thank Tim Davis and Joseph I iu for their help and insights from their

implementations and experiences. We are especially grateful to Cleve Ashcraft for stimulating discussions

about object-oriented design, efficiency, and programming tricks.

REFERENCES

[1] PATRICK AMESTOY, TIMOTHY A. DAVm, AND IAIN S. DUtF, An approximate minimum degree order-

ing algorithm, Technical Report TR- 94 039, Computer e.nd Information Sciences Dept., University

of Florida, December 1994.

[2] CLEVE ASHCRAFT, Compressed graphs and the minimum degree algorithm, SIAM J. Sci. Comput., 16,

No. 6 (1995), pp. 1404 1411.

[3] ERICH GAMMA, RICHARD HELM, RALPH JOHNSON, AND J(_HN VLISSIDES, Design Patterns: Elements

of Reusable Object-Oriented Software. Addison Wesley Pr _fessional Computing Series. Addison Wes-

ley Longman, 1995.

[4] J. ALAN GEORGE AND JOESEPH W. H. LIU, The evolutio':_ of the minimum degree algorithm, SIAM

Rcv., 31, No. 1 (1989), pp. 1 19.

[5] JOSEPH W. H. LIu, Modification of the minimum-degree algorithm by multiple elimination, ACM Trans.

Math. Software, 11 (1985), pp. 141 153.

[6] ESMOND G. NG AND PADMA RAGHAVAN, Performance of gr'_edy ordering heuristics for sparse Cholesky

factorization, submitted to SIAM J. Mat. Anal. Appl. (1997).

[7] S. PARTER, The use of planar graphs in Gaussian eliminati, m, SIAM Rev., 3 (1961), pp. 364 369.

[8] ED ROTHBERG, Ordering sparse matrices using approximatt: minimum local fill, Preprint, April 1996.

[9] ED ROTHBERG AND STAN EISENSTAT, Node selection strategies for bottom-up sparse matrix ordering,

SIAM J. Matrix Anal. Appl., 19, No. 3 (1998), pp. 682 _95.

[10] M. YANNAKAKIS, Computing the minimum fill-in is NP-c_mplete, SIAM J. Algebraic and Discrete

Methods, 2 (1981), pp. 77 79.

10

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, inctudlilg the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information Sen] comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions fc_ reducing this burden, to Washington Headquarters Servlc* s, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, PapE _vork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPOR'i" TYPE AND DATES COVERED

January 1999 Contra:tor Report

i 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

An object-oriented collection of minimum degree algorithnrs: Design,

implementation, and experiences C NAS1-97046

6. AUTHOR(S)

Gary Kumfert

Alex Pothen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

WU 505-90-52-01

8. PERFORMING ORGANIZATION

Institute for Computer Applications in Science and Engineering

Mail Stop 403 NASA Langley Research Center

Hanlpton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Rcscarch Center

Hampton, VA 23681-2199

REPORT NUMBER

]CASE Report No. 99-1

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-1999-208977
ICASE Report No. 99-1

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

In Computing in Object-oriented I'aralh'l Environments, Lecture Notes in Computer Science 1505.
!

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified Unlimited

Subject Category 60, 61

Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

13. ABSTRACT (Maximum 200 words)

The multiple nlinimum degree (MMD) algorithm and its variants have enjoyed 20+ years of research and progress

in generating fill-reducing orderings for sparse, symmetric positive definite matrices. Although conceptually simple,

efficient implementations of these algorithms are deceptively comple_ and highly specialized.

In this case study, we present an object-oriented library that impkments several recent minimum degree-like al-

gorithms. We discuss how object-oriented design forces us to decompose these algorithms in a different manner

than earlier codes and dcnlonstrate how this impacts the flexibility a ad efficiency of our C++ implementation. We

compare the performance of our code against other implementations in C or Fortran.

14. SUBJECT TERMS

object-oriented design; sparse matrices; Cholesky factorization;

minimum degree ordering system

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

_ISN 7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

19. SECUR TY CLASSIFICATION

OF AB. t TRACT

15. NUMBER OF PAGES

15
16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std Z39-18

298-102

